On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual

نویسندگان

  • Michel Lavrauw
  • Leo Storme
  • Geertrui Van de Voorde
چکیده

In this paper, we study the p-ary linear code Ck(n, q), q = ph, p prime, h 1, generated by the incidence matrix of points and k-dimensional spaces in PG(n, q). For k n/2, we link codewords of Ck(n, q) \ Ck(n, q)⊥ of weight smaller than 2qk to k-blocking sets. We first prove that such a k-blocking set is uniquely reducible to a minimal k-blocking set, and exclude all codewords arising from small linear k-blocking sets. For k < n/2, we present counterexamples to lemmas valid for k n/2. Next, we study the dual code of Ck(n, q) and present a lower bound on the weight of the codewords, hence extending the results of Sachar [H. Sachar, The Fp span of the incidence matrix of a finite projective plane, Geom. Dedicata 8 (1979) 407–415] to general dimension. © 2008 Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codewords of small weight in the (dual) code of points and k-spaces of PG(n, q)

In this paper, we study the p-ary linear code Ck(n, q), q = p , p prime, h ≥ 1, generated by the incidence matrix of points and k-dimensional spaces in PG(n, q). We note that the condition k ≥ n/2 arises in results on the codewords of Ck(n, q). For k ≥ n/2, we link codewords of Ck(n, q)\ Ck(n, q) ⊥ of weight smaller than 2q to k-blocking sets. We first prove that such a k-blocking set is unique...

متن کامل

On the code generated by the incidence matrix of points and hyperplanes in PG(n, q) and its dual

In this paper, we study the p-ary linear code C(PG(n, q)), q = p, p prime, h ≥ 1, generated by the incidence matrix of points and hyperplanes of a Desarguesian projective space PG(n, q), and its dual code. We link the codewords of small weight of this code to blocking sets with respect to lines in PG(n, q) and we exclude all possible codewords arising from small linear blocking sets. We also lo...

متن کامل

On the (dual) code generated by the incidence matrix of points and hyperplanes in PG(n, q)

In this paper, we study the p-ary linear code C(PG(n, q)), q = p, p prime, h ≥ 1, generated by the incidence matrix of points and hyperplanes of a Desarguesian projective space PG(n, q), and its dual code. We link the codewords of small weight of this code to blocking sets with respect to lines in PG(n, q) and we exclude all possible codewords arising from small linear blocking sets. We also lo...

متن کامل

An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of PG(n, q)

Let Ck(n, q) be the p-ary linear code defined by the incidence matrix of points and k-spaces in PG(n, q), q = p, p prime, h ≥ 1. In this paper, we show that there are no codewords of weight in the open interval ] q −1 q−1 , 2q[ in Ck(n, q) \ Cn−k(n, q) ⊥ which implies that there are no codewords with this weight in Ck(n, q) \ Ck(n, q) ⊥ if k ≥ n/2. In particular, for the code Cn−1(n, q) of poin...

متن کامل

SOME FIXED POINT THEOREMS IN LOCALLY CONVEX TOPOLOGY GENERATED BY FUZZY N-NORMED SPACES

 The main purpose of this paper is to study the existence of afixed point in locally convex topology generated by fuzzy n-normed spaces.We prove our main results, a fixed point theorem for a self mapping and acommon xed point theorem for a pair of weakly compatible mappings inlocally convex topology generated by fuzzy n-normed spaces. Also we givesome remarks in locally convex topology generate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008